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Parameterization of cloud lidar backscattering
profiles by means of asymmetrical Gaussians

Massimo Del Guasta, Marco Morandi, Leopoldo Stefanutti

A fitting procedure for cloud lidar data processing is shown that is based on the computation of the first
three moments of the vertical-backscattering (or -extinction) profile. Single-peak clouds or single cloud
layers are approximated to asymmetrical Gaussians. The algorithm is particularly stable with respect to
noise and processing errors, and it is much faster than the equivalent least-squares approach.
Multilayer clouds can easily be treated as a sum of single asymmetrical Gaussian peaks. The method is
suitable for cloud-shape parametrization in noisy lidar signatures (like those expected from satellite

lidars).

It also permits an improvement of cloud radiative-property computations that are based on huge

lidar data sets for which storage and careful examination of single lidar profiles can’t be carried out.
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1. Introduction

A backscattering lidar is able to provide the vertical
profile of a cloud with a resolution of the order of a
few meters. Such a high resolution is useful for the
study of cloud evolution and microphysics, but at the
same time it is too high for purposes that require a
simple parametrization of the profile. In such cases
the magnificent lidar resolution is often rendered
superfluous because the cloud’s backscattering pro-
file is approximated to a rectangular one that is
limited by a sharp base and a top. Base- and top-
height determinations can be carried out automati-
cally in multilayer clouds as well (e.g., Pal et al.?).

Many clouds show an asymmetrical vertical profile
with a smooth base because of water or ice precipita-
tion. Such situations have been often observed in
midlevel antarctic clouds by Del Guasta et al.,2 and
they are expected from mixed-phase midlevel cloud
simulations (Sassen®4). Warm cirrus clouds have
been observed by Platt et al.5 to show a typical
asymmetrical backscattering profile as well. Insuch
cases determination of the cloud base and the top
level is still possible, but the meaning of such informa-
tion is not so clear and the modeling of such clouds as
rectangular ones seems inadequate.
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In the case of good lidar profiles, a vertical-
extinction profile can in principle be derived that
permits the computation of some radiative properties
of the cloud (e.g., the IR radiance) when the tempera-
ture profile and some basic information about the
cloud composition are known. For these purposes
the complete lidar extinction profile should be used in
a radiative-transfer model, but this results in a waste
of computer memory when huge lidar data sets are
used for statistical purposes. To avoid this problem,
a rectangular parametrization of clouds is often used
instead of the complete profile. In thick low clouds
the base and top heights are very important because
radiatively they can be considered to be black bodies
that are irradiating downward and upward at their
characteristic temperatures, regardless of the vertical-
density profile of the cloud, and a rectangular cloud-
shaping parameterization is adequate. However, in
optically thinner midlevel and high clouds that often
extend vertically for more than 1000 m,? the lidar-
derived base and top heights do not have the same
importance because the downward and upward IR
fluxes are produced by the whole cloud layer. In
such cases the vertical profile of the cloud becomes
more important for the radiative computations, and
the parametrization of the lidar profile should roughly
preserve the cloud shape. As an example, a typical
2000-m-thick altocumulus cloud, as often observed in
Antarctica by Del Guasta et al.,? that has a —30 °C
midcloud temperature, an averaged 532-nm extinc-
tion of 10~3 m~1, and an asymmetrical shape (because
of ice precipitation) has been used by the author to
compute the downward IR radiance by means of a
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simplified radiative-transfer model. The computed
radiance was approximately 15% larger when the real
cloud profile was used than when an equivalent
rectangular model of the same cloud was used.

Rather than using a rough rectangular model that
is defined by three values (base, top, and averaged
extinction or backscattering), we can parameterize
each cloud layer in a lidar signature by a truncated
asymmetrical Gaussian that is expressed through six
figures (base and top heights, peak extinction or
backscattering, peak position, and two standard devia-
tions); multilayer clouds can be expressed as a sum of
such functions (see below).

When a large amount of noisy lidar data is acquired
(e.g., from future satellite-borne lidars) with no hope
of retrieval of optical information other than the
backscattering profile (i.e., there is too much noise to
permit an optlcal extmctxon retrieval) a fast and
memory-saving way to store the data is required.
Also for such a case, the algorithm presented here can
be useful because of its stability with respect to noise
and signal distortion.

2. Asymmetrical-Gaussian Method

The asymmetrical Gaussian adopted for this study is
composed of two half-Gaussians with different stan-
dard deviations, o; and o, that are joined at the
cloud’s peak height, where continuity and derivability

are respected (Fig. 1). It can be expressed by
—
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with S, equals the area under a complete Gaussian
when ¢ = oy, S; equals the area under a complete
Gaussian with o = 03, and the continuity condition at
z=2z,isvalid: S,/o;=8;/0;. The moments M, of
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Fig. 1. Asymmetrical Gaussian parameters used in the text.
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the curve G(z) with respect to z = 0 are expressed by

r G(z)z"dz

M,=—F(" (2)

r G(z)dz

This expression can easily be rewritten in terms of
finite summations in the case of discrete data points.

The first three moments computed with the center
on the cloud peak (z,) are given by

r G(z)z — z,)"dz

M, =

J‘ G(z)dz
The first three moments are then
Sy0, — S10’1
=@/\em—g 5 (3)
320'22 - 310'1
My, = S, +8S, (4)
Mo = (4 e 20— Sy .
5 = (4/\2m) ~ g (5)
and they still have the boundary condition
S,/01 = S/ 0. (6)
Solving the system we have
Mlp = V2/m(0y— 0y), (7)
M,, = 012 — 0103 + 0%, (8)
M,, = —2y2/7(oy — ay)(03% + a?). 9)
These are the moments around z = 2z,. We can

convert such moments to those around the midcloud
position M, by using the relations

Mlb = 0, (10}
M?b = M2p - M1p2s (11)
M3b - M3p + ZMIPS = 3M1PM2P’ (12)

and when we substitute the previous findings, we
have

M,, =0,
M,, = (052 + 0,?)(1 — 2/m) — 0y09(1 — 4/mw), (13)
M, = V2/m((0:3~ 02°)(1 — 4/m)

— (07092 — 090¢%)(12/7 — 4)] (14)

When the lidar data are processed, the cloud backscat-



tering profile B(z) is computed. It is then possible to
compute M;, M,, and M; for B(z) [or for extinction
o(z)] with Eq. (2), also automatically. Moments
around the midcloud point can immediately be com-
puted with Eqgs. (11) and (12), in the forms

My, =M, — M?,
M3b = M3 + 2M13 - 3M1M2.
By inverting Eqs. (13) and (14) we find that it is then

possible to retrieve o; and o, as functions of the
moments:

of the first three moments of the lidar backscattering
profile.

Of course, the same fitting problem could be solved
with the least-squares method. In such a case the
minimum of the following function is searched:

x(a, b, ¢, xo) = J'ZP [log G(2) — ¢ + a(z — z,)*|dz

- J‘_a° [log G(2) — ¢ + bz — 2y)*|dz,
zp

Ty =

In this way o, is expressed as a function of o, and M.
o, can’t be explicitated in terms of the moments, and

(20)
~(4/7 = Doy + [4/m = 1P0, - 4(1 = 2/m)@¥1 - 2/m) — M)} .
= 2(1 - 2/m) 116}
where ¢ = 1/(2092), b = 1/(20,2), and ¢ =
103[31/(0' 1 J2—‘1T)]

it remains in the implicit form of Eq. (14).

The solution of the system comprising Egs. (14)
and (15) can easily be obtained numerically if o; is
varied by steps, the corresponding o, is computed
with Eq. (15), and the residual function is evaluated:

res(oy) = IMg,b - V2/7 [—(013 - 0®)(1 — 4/m)

12
+ (0109° — 02(712)('_ = 4)” )

= (16)
where res denotes the residual. Next one searches
for the residual function’s minimum, which corre-
sponds to the solution of the system.

The maximum range of variation of o, to be used in
the procedure is determined by the square root
present in Eq. (15), and the reality and positivity of
solutions must be verified:

0 < oy < [(2.75 My)]V/2. (17)

Once the minimal o, and o3 are known, it is possible
to compute z, with Eq. (7):

2y = M, - M(Uz - 0y). (18)

To achieve complete knowledge of the fitting func-
tion, one can obtain S;, S;, and G(z,) from the
integrated G(z) [integrated backscattering in the case
of cloud backscattering G(z) = B(z)] by using Egs. (1)
and (6), which leads to

J. G(z)dz

V2m(o, + 0y) '

With this method it is possible to fit any cloud with an
asymmetrical Gaussian simply through computation

G(z,) = 2 (19)

We search the minimum by changing, in an itera-
tive way, the 2, positions and solving for a, b, and ¢
with the least squares system. At each z, step, a new
solution of the system must be searched for, which
requires computing that involves all the data points;
this procedure wastes time when the data records are
long. The solution method described in this paper
overcomes this problem because an iterative proce-
dure is required only to solve a nonlinear equation of
one variable, and no further computing of the data
points is necessary.

One of the main advantages of the use of Gaussians
in cloud-profile parametrization lies in the scaling
properties of such functions. In fact it is possible to
elevate a Gaussian to any power m and still preserve
the Gaussian shape. Simple scalings of only the
peak value and the standard deviations are involved
in this process.

Conservation of the Gaussian shape means that
every relation between oy, 03, My, and My, that was
obtained above is still valid when the cloud profile
G(z) (the data being fitted) is elevated to the power m,
so that the algorithm can work both on G(z) profiles
and on G™(z). When G(z) is elevated to a power m,
the signal-to-noise ratio is strongly enhanced in the
transformed cloud layer, which permits better stabil-
ity in the fitting procedure with respect to noise and
to the offset of the backscattering profile. Of course
the use of m > 1 leads to a nonlinearly fitted cloud
profile, which yields a well-fitted cloud peak and a
less-well-fitted weak and noisy part of the cloud.

When G™(z) is used instead of G(z), two standard
deviations, o,,, and oy, are obtained with the algo-
rithm instead of o, and o;. The latter can be com-
puted with the simple expressions

o) = Oym, (21)
oy = o'zm\/m, (22)

where z, is the same for G(z) and for G(z)™.
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3. Test of the Procedure

Several tests of the procedure have been carried out
on simulated noisy cloud profiles to check the sensitiv-
ity of the retrieved z,, 0y, and o, values to noise and
offsets that affect the G(z) data. A standard cloud
with z, = 4000 m, G(2) = B(z,) = 103 m~'sr '}, oy =
40 m, and o, = 400 m has been adopted; the height
resolution is 15 m (Fig. 2). The range in which the
moments of B™(z) were computed was 1000 + 7000 m.
A random noise with Gaussian distribution has been
added, with a specified signal-to-noise ratio (S/N) at
the cloud peak that ranges from 5 to 90 (a S/N < 10
at the cloud peak corresponds to noisy lidar data that
is generally considered to be unreliable during lidar
data processing).

Here, m = 5 has been adopted, the odd figure
having been preferred because it holds the null-mean
value of the noise. An offset that linearly increases
with the height (starting from 0 at 1000 m) has been
introduced, and the slope is variable. The slope was
varied from 0 (null offset) to 2.5 x 10~* at 7000 m,
which corresponds to 25% of the cloud peak at 7000
m. When one considers lidar signals, an offset of
such magnitude can be present in B(z) because of the
errors that result from bad data processing.

Processing for simulated clouds without offsets was
carried out through computation of z,, o, and o, for
100 simulated clouds for each value of S/N (ranging
from 5 to 90, with a step interval of 5). At the end,
the mean values and standard deviations of such
quantities were produced for each S/N value. Re-
sults are shown in Figs. 3, 4, and 5. The results
show that, for S/N > 15, an error of less than 10 m
for the mean z, is achieved, with a +20-m dispersion
of the retrieved values (Fig. 3). Similar errors for
the mean value and similar data dispersions are
present in o, (Fig. 4). Dispersion of the o, data is
still of the order of £20%, but the mean value is more
accurate than 10 m (Fig. 5).

12 x10-4 ORIGINAL-CLOUD PROFILE RECONSTRUCTION
:: |
; S/N=/ 10
10
a[: -
';:' 6
= i
4 | l
2 4 I.‘l_r_ !
|
ok kiR !
= i ; i i
R ,= P
. | : \

“j600 2000 3000 4000 5000 6000 7000

height [m]
Fig. 2. Example of cloud reconstruction by means of the algo-
rithm presented in this study. The original cloud (without noise)
is represented by the solid curve, and the reconstruction by the
dotted curve. For the original cloud, z, = 4000 m, oy = 40 m, and
oz = 400 m; for the reconstructed cloud, z, = 3963 m, oy = 27 m,
and o = 449 m.
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Fig. 3. Mean retrieved z, and standard deviation (S.D.) of the

retrieved values of z, as functions of the S/N at the cloud

peak. The original z, was 4000 m.

Processing for simulated clouds with offsets was
carried out in the same way, but sloping offsets that
increased from 0 at 1000 m to 3% and 25% of the
cloud peak value at 7000 m were added. An example
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Fig. 4. Mean retrieved o, and standard deviation (8.D.) of the
retrieved values of oy as functions of the S/N at the cloud

peak. The original o; was 400 m.
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Fig. 5. Mean retrieved o; and standard deviation (S.D.) of the
retrieved values of o; as functions of the S/N at the cloud
peak. The original o, was 40 m.
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Fig. 6. Example of cloud reconstruction by means of the pre-
sented algorithm in the presence of a strong offset on the original
data. The original cloud (without noise) is represented by the
solid curve and the reconstructed cloud by the dotted curve. For
the original cloud, z, = 4000 m, o; = 20 m, and oz = 600 m; for the
reconstructed cloud, z, = 4089 ms, oy = 31 m, and oz = 530 m.

of cloud fitting for the conditions with a 25% offset at
7000 m is given in Fig. 6. The results are plotted in
Figs. 7, 8, and 9. The effects of an offset are obvi-
ously changes in the cloud moments, so that drifts in
2p, 01, and o, are expected. Such drifts are not
present in the case of a 3% offset slope, but they are
well visible in the extreme case of a 25% slope. For
high S/N ratios the drift is approximately 70 m on z,
(Fig. 7) and 160 m on o, (Fig. 8). The effect of the
offset on o, (Fig. 9) is to cause not only a drifting
(nearly 7 m over 40 m), but also a stabilization of the
solutions of the algorithm: The retrieved o, and o,
values when a weak offset is present are spread
around the mean value of 40 m by approximately +20
m, and this is also the case for high S/N’s. With a
steeper offset slope (25% at 7000 m), the spreading is
strongly reduced. This phenomenon is visible to a
lesser extent in Figs. 7 and 8.
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Fig. 7. Retrieved z, values as a function of the S/N at the cloud

peak for two different offset slopes. The case of a 3% offset (stars)

is almost equivalent to no offset. The crosses represent the 25%

offset.
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Fig. 8. Retrieved o3 values as a function of the S/N at the cloud
peak for two different offset slopes. The case of a 3% offset (stars)
is almost equivalent to no offset. The crosses represent the 25%
offset.

These tests show how stable the algorithm is with
respect to noise of different kinds. This stability
implies that the method is particularly suited for use
with noisy lidar data processing for all cases in which
single peaks in a cloud can be isolated. In Fig. 10 an
example of fitting for a triangular cloud that was
performed with this method is reported; it shows how
the cloud is reconstructed in terms of asymmetrical
Gaussians.

4. Muitilayer Clouds

The presence of multilayer clouds is at least as
common as that of single peaks. This is a problem
for simple cloud parametrizations. For cases in
which the n peaks are well separated, the single peaks
can be manually or automatically split,! and the
procedure can be applied to the n single layers. The
whole cloud is then parametrized by the sum of n
asymmetrical Gaussian functions, each one param-
etrized by four figures. When peaks are not fully
separated, the shown stability of the procedure with
respect to noise and offset (with m > 1) is very
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Fig. 9. Retrieved o, values as a function of the S/N at the cloud

peak for two different offset slopes. The case of a 3% offset is

almost equivalent to no offset.
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Fig. 10. Example of a non-Gaussian cloud (triangles) fitted by
means of the algorithm (m = 5).

helpful and permits one to proceed as in the case of
well-separated peaks. An example of this case is
shown in Fig. 11, in which real lidar data has been
processed. The cloud was manually split into two
parts at the 10,900 m level, with each part then being
automatically processed with m = 3 (because of
m > 1, the peaks are fitted better than is the rest of
the cloud). The final total fitting profile is just the
sum of the two functions. It is interesting to note
that the only manual intervention was splitting the
cloud into separate peaks. This splitting can be also
achieved automatically if the relative minima of the
cloud profile are searched.

5. Test of the Procedure on Real Lidar Data

The usefulness of the procedure presented in this
paper for fitting belly-shaped clouds or multilayer
clouds in which single belly-shaped sublayers has
been demonstrated in Section 3. But real-world

TWO-PEAK CLOUD RECONSTRUCTION
8 T T T T

-~

mﬂERlNG [1/m er

1 1.058 11 1.16 12 125
ALTITUDE [m]
Fig. 11. Example of the reconstruction of real lidar cloud data by
means of two asymmetrical Gaussians (m = 3). The solid curve
represents the lider data whereas the dashed curve represents the
fitting curve. Backscatteringisn X 1075; altitudeisn X 104,
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clouds often show a more-complex profile. If the
cloud profile is, for instance, rectangular or quite
ragged, the procedure as shown is useless, and a
common rectangular representation of the cloud can
be less presumptuous. The problem is to assess the
validity of the Gaussian method on a statistical basis.
For this purpose, the algorithm has been applied to a
subset of a large lidar data set that was collected in
1989 at Dumont d’Urville (DDU), Antarctica, by Del
Guasta et al.2 The test data set contained 300
low-cloud and 200 midlevel and high-cloud profiles.
Each cloud profile was averaged over 30 min, which
corresponds to a horizontal spatial averaging of up to
30 km when the tropospheric winds observed over
DDU are considered. This averaging obviously
smoothes the final lidar profile of the cloud with
respect to shortly averaged profiles.

The test of the asymmetrical Gaussian method was
carried out on the data set described above in the
following way: For each single-layer cloud, the base
and the top heights were determined, and the asym-
metrical Gaussian algorithm (m = 3) was applied to
the backscattering profile between these two limits.
The resulting fitting function was set to 0 below the
base and above the top and was then rescaled to
obtain an integral equal to the integrated backscatter-
ing of the real cloud. At the same time, a rectangu-
lar fitting procedure was performed on the cloud
between the base and the top. We confined the
Gaussian fitting to the area between the base and the
top, so it was possible to compare the quality of the
fitting procedures that were performed by means of
the rectangular and Gaussian functions, and it was
also possible to maintain the definitions of the base
and the top, as is so popular among lidar-studies
people. Multilayer clouds, when possible, were sliced
as described in the previous paragraph, with each
layer’s having been processed as a monolayer cloud.
When the layer separation was not possible, the
whole multi layer cloud was processed.

To estimate the quality of the fittings that were
obtained with the Gaussian and rectangular func-
tions, we used a standard estimation error (SEE)
procedure defined by

1/2
)

SEE = §[Bi(z)—ﬁ(zﬂzf(n—2 ,  (28)

where B(z) is the measured lidar profile of n samples
and B(z) is a fitting function. The SEE represents
the residual variance of the cloud profile after it is
fitted. The SEE is high when the cloud profile is
ragged or noisy with respect to the fitting function.
Better fitting produces a lower SEE on the same cloud
profile.

We computed the SEE for both Gaussian and
rectangular fitting functions using the test data set.
The ratio between the two SEE values was computed
for all the clouds, and to the resulting histograms are
shown in Figs. 12, 13, and 14. Theratio is close to or
higher than 1 if the results of Gaussian fitting
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Fig. 12. Histogram of the ratio between the standard estimation
errors (SEE) obtained with the asymmetrical Gaussian (AG) and
the rectangular (rec) functions. The histogram is extended to all
the test clouds.

procedure are not better or are worse than those of
the rectangular one, but the ratio is lower than 1 if
the asymmetrical Gaussian procedure fits the cloud
profile (or layer) better. InFig. 12 the whole data set
is represented, whereas in Figs. 13 and 14 it has been
split into sets for low clouds (i.e., with a base lower
than 2000 m) and for higher ones. It is remarkable
that fewer than 5% of the test clouds show a SEE
ratio close to 1, which suggests that, for those clouds,
the asymmetrical fitting procedure was inadequate.
For the rest of the clouds the asymmetrical Gaussian
fitting procedure represents an improvement with
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Fig. 13. Histogram of the ratio between the standard estimation
errors (SEE) obtained with the asymmetrical Gaussian (AG) and
the rectangular (rec) functions. The histogram is extended to all
the test clouds with a base lower than 2000 m.
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Fig. 14. Histogram of the ratio between the standard estimation
errors (SEE) obtained with the asymmetrical Gaussian (AG) and
the rectangular (rec) functions. The histogram is extended to all
the test clouds higher than 2000 m.

respect to the rectangular function. A comparison
of Figs. 13 and 14 makes it evident that low clouds are
better fitted with this method than are higher clouds.
That is obvious in DDU clouds because most of low
clouds are stratified and have thick precipitation
trails, so that the cloud backscattering profile is a thin
belly-shaped layer that is shifted toward the cloud
top. Such clouds are poorly fitted by means of
rectangular functions. Higher DDU clouds are
thicker and more ragged than lower clouds. For this
reason high clouds are more difficult to fit by means of
asymmetrical Gaussians.

6. Conclusions

A method to fit lidar cloud profiles through the use of
an asymmetrical Gaussian has been reported. It is
relatively stable in the presence of noise and is
suitable for use with cloud profiles that are almost
belly shaped. It can be used to parametrize mono-
layer clouds or multilayer clouds if the cloud is split
into single layers on which the method can be applied.
Each cloud (or cloud layer) is parametrized by means
of six figures (base and top heights, peak value, peak
position, and two standard deviations). This way,
cloud asymmetry is preserved in the fitting function.

Such a method proved valuable when low-cloud
lidar profiles were fitted, as was observed with the
data from Dumont d’Urville (DDU), and yielded a
much better cloud-fitting characterization than the
usually used rectangular model. Midlevel and high
clouds are more difficult to fit with the new method,
but in most cases an improved fit is obtained. The
suggested method can be introduced as a quick
routine in any lidar-data-processing software to pro-
vide an alternative way to parametrize the cloud
profiles. Computing of the SEE values for both the
Gaussian and the rectangular fitting functions can
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assist the data processing, with the lowest value’s
being used to choose the fitting function that is most
suitable for each profile.
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Program for Antarctic Research, the Istitute Polaire
Francaise, and contract EV5V CT92-0066 from the
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